18 research outputs found

    Tetraspanin CD53 promotes lymphocyte recirculation by stablising L-selectin surface expression

    Get PDF
    Tetraspanins regulate key processes in immune cells; however, the function of the leukocyterestricted tetraspanin, CD53 has remained unknown. Here we show that CD53 is essential for lymphocyte recirculation. Lymph nodes of Cd53-/- mice were smaller than wild-type mice due to a marked reduction in B cells and a 50% decrease in T cells. This reduced cellularity reflected an inability of Cd53-/- B and T cells to efficiently home to lymph nodes, due to the near absence of L-selectin from Cd53-/- B cells and reduced stability of L-selectin on Cd53-/- T cells. Further analyses, including on human lymphocytes, showed that CD53 inhibits L-selectin shedding via both ADAM17-dependent and -independent mechanisms. The disruption in lymphocyte recirculation in Cd53-/- mice led to impaired immune responses dependent on antigen delivery to lymph nodes. Together these findings demonstrate a previously unrecognized essential role for CD53 in lymphocyte trafficking and immune responses

    HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting

    Get PDF
    Infection and inflammation are able to induce diet-independent Na+-accumulation without commensurate water retention in afflicted tissues, which favors the pro-inflammatory activation of mouse macrophages and augments their antibacterial and antiparasitic activity. While Na+-boosted host defense against the protozoan parasite Leishmania major is mediated by increased expression of the leishmanicidal NOS2 (nitric oxide synthase 2, inducible), the molecular mechanisms underpinning this enhanced antibacterial defense of mouse macrophages with high Na+ (HS) exposure are unknown. Here, we provide evidence that HS-increased antibacterial activity against E. coli was neither dependent on NOS2 nor on the phagocyte oxidase. In contrast, HS-augmented antibacterial defense hinged on HIF1A (hypoxia inducible factor 1, alpha subunit)-dependent increased autophagy, and NFAT5 (nuclear factor of activated T cells 5)-dependent targeting of intracellular E. coli to acidic autolysosomal compartments. Overall, these findings suggest that the autolysosomal compartment is a novel target of Na+- modulated cell autonomous innate immunity.This work was supported by the Deutsche Forschungsgemeinschaft [WA 2539/4-1, 5-1, 7-1]; Deutsche Forschungsgemeinschaft (DE) [JA 1993/ 4-1]; Universitätsklinikum Regensburg [Reform C]; NIHR Cambridge Blood and Transplant Research Unit Organ Donation

    NCX1 represents an ionic Na+ sensing mechanism in macrophages

    Get PDF
    Inflammation and infection can trigger local tissue Na(+)accumulation. This Na+-rich environment boosts proinflammatory activation of monocyte/macrophage-like cells (M phi s) and their antimicrobial activity. Enhanced Na+-driven M phi function requires the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5), which augments nitric oxide (NO) production and contributes to increased autophagy. However, the mechanism of Na(+)sensing in M phi s remained unclear. High extracellular Na(+)levels (high salt [HS]) trigger a substantial Na(+)influx and Ca(2+)loss. Here, we show that the Na+/Ca(2+)exchanger 1 (NCX1, also known as solute carrier family 8 member A1 [SLC8A1]) plays a critical role in HS-triggered Na(+)influx, concomitant Ca(2+)efflux, and subsequent augmented NFAT5 accumulation. Moreover, interfering with NCX1 activity impairs HS-boosted inflammatory signaling, infection-triggered autolysosome formation, and subsequent antibacterial activity. Taken together, this demonstrates that NCX1 is able to sense Na(+)and is required for amplifying inflammatory and antimicrobial M phi responses upon HS exposure. Manipulating NCX1 offers a new strategy to regulate M phi function

    Autophagy and the (Pro)renin Receptor

    Get PDF
    The (pro)renin receptor (PRR) is a newly reported member of the renin-angiotensin system (RAS); a hormonal cascade responsible for regulating blood pressure. Originally, the identification of PRR was heralded as the next drug target of the RAS, of which such therapies would have increased benefits against target-organ damage and hypertension. However, in the years since its discovery several conditional knockout mouse models of PRR have demonstrated an essential role for this receptor unrelated to the renin-angiotensin system and blood pressure. Deletion of PRR in podocytes or cardiomyocytes resulted in the rapid onset of organ failure, eventuating in animal mortality after only a matter of weeks. In both cases, deletion of PRR resulted in the intracellular accumulation of autophagosomes and misfolded proteins, indicating a disturbance in autophagy. In light of the fact that the majority of PRR is located intracellularly, this molecular function appears to be more relevant than its ability to bind to high, non-physiological concentrations of (pro)renin. This review will focus on the role of PRR in autophagy and its importance in maintaining cellular homeostasis. Understanding the link between PRR, autophagy and how its loss results in cell death will be essential for deciphering its role in physiology and pathology

    Composite bioprinted hydrogels containing porous polymer microparticles provide tailorable mechanical properties for 3D cell culture

    No full text
    The mechanical and architectural properties of the three-dimensional (3D) tissue microenvironment can have large impacts on cellular behavior and phenotype, providing cells with specialized functions dependent on their location. This is especially apparent in macrophage biology where the function of tissue resident macrophages is highly specialized to their location. 3D bioprinting provides a convenient method of fabricating biomaterials that mimic specific tissue architectures. If these printable materials also possess tunable mechanical properties, they would be highly attractive for the study of macrophage behavior in different tissues. Currently, it is difficult to achieve mechanical tunability without sacrificing printability, scaffold porosity, and a loss in cell viability. Here, we have designed composite printable biomaterials composed of traditional hydrogels [nanofibrillar cellulose (cellulose) or methacrylated gelatin (gelMA)] mixed with porous polymeric high internal phase emulsion (polyHIPE) microparticles. By varying the ratio of polyHIPEs to hydrogel, we fabricate composite hydrogels that mimic the mechanical properties of the neural tissue (0.1–0.5 kPa), liver (1 kPa), lungs (5 kPa), and skin (10 kPa) while maintaining good levels of biocompatibility to a macrophage cell line
    corecore